Wednesday, 29 March 2017

Minterms and Maxterms

Minterms and Maxterms





n binary variables can be combined to form 2n terms (AND terms),
called Minterms or standard products. x’y’(00),x’y(01),xy’(10),xy(11)



In a similar fashion, n binary variables can be combined to form 2n terms (OR terms), called Maxterms or standard sums.

Boolean Functions expressed in Sum of MinTerms or Product of MaxTerms are said to be in Canonical Form



* Note that each maxterm is the complement of its corresponding minterm and vice versa.








1


Minterms and Maxterms (continued)




Each Minterm is obtained from an AND term. Variable primed if corresponding bit 0, vice versa Each Maxterm is obtained from an OR term. Variable primed if corresponding bit 1, vice versa


x
y
z
Minterms
Maxterms
0
0
0
x’y’z’
mo
x+y+z
Mo
0
0
1
x’y’z
m1
x+y+z’
M1
0
1
0
x’yz’
m2
x+y’+z
M2
0
1
1
x’yz
m3
x+y’+z’
M3
1
0
0
xy’z’
m4
x’+y+z
M4
1
0
1
xy’z
m5
x’+y+z’
M5
1
1
0
xyz’
m6
x’+y’+z
M6
1
1
1
xyz
m7
x’+y’+z’
M7






2


Sum of Minterms S

§ Given the truth table, express F1 in sum of minterms
x
y
z
F1
F2

0
0
0

0
1

0
0
1


0

1

0
1
0

0
1

0
1
1

0
1

1
0
0

1
0




1
0
1

0
0

1
1
0

0
0

1
1
1

1
0












F1 (x, y, z) = å(1,4,7) = m1 + m4 + m7

= (x' y' z) + (xy' z' ) + (xyz)


§ Find F2                                                                                                                                                                                                                                                         3


Product of Maxterms P


§ Given the truth table, express F1 in Product of Maxterms

x
y
z


F1
F2


0
0
0


0
1

0
0
1

1
0

0
1
0


1



0

0
1
1


0
1

1
0
0

1
0

1
0
1

1
0

1
1
0

1
0

1
1
1

1
0








F1(x, y, z) = Õ(0,2,3) = M 0
× M 2
× M3


= (x + y + z)(x + y'+z)(x + y'+z')




§ Find F2                                                                                                                                                                                                                                                         4


Sum of Min Terms

Express the Boolean function F = x + y' z in a sum of minterms.
AIM: Convert it to 3 variable AND Terms and take their SUM
x = x( y + y' ) = xy + xy'

xy = xy(z + z' ) = xyz + xyz' xy' = xy' (z + z' ) = xy' z + xy' z' y' z = y' z(x + x' ) = xy' z + x' y' z


Adding all terms and excluding recurring terms:
F (x, y, z) = x' y' z + xy' z'+xy' z + xyz'+xyz

F (x, y, z) = m1 + m4 + m5 + m6 + m7  = Ã¥(1,4,5,6,7)



5


Product of Max Terms

Express the Boolean function F = xy + x' z in a Product of Maxterms.

AIM: Convert it to 3 variable OR Terms and take their Product

Tip: Postulate 4b (Distributed)
F = xy + x' z = (xy + x' )(xy + z) (xy + x' ) = (x + x' )( y + x' )

(xy + z) = (x + z)( y + z)


F =1.( y + x' )(x + z)( y + z)
All Term missing one variable  X+X’=1
x'+ y + zz' = (x'+ y + z)(x'+ y + z' )

x + z + yy' = (x + z + y)(x + z + y' )
y + z + xx' = ( y + z + x)( y + z + x' )





Remove any recurring terms

F = (x + y + z)(x + y'+z)(x'+ y
+ z)(x'+ y + z' )
M0M2M4M5
= F(x,y,z)=Π(0,2,4,5)
6






Using Truth Table




         Find Sum of Minterms and Product of MaxTerms of F= xy+x’z
(Same as before)

–  Truth Table




















Find Sum of Minterms & Product of Maxterms from truth table

F(x,y,z)= (1,3,6,7)

F(x,y,z)= П (0,2,4,5)


7


Conversion between Canonical Forms




       Complement of a function expressed as sum of minterms equals sum of minterms missing from the original function

       F(A,B,C,D) = (1,4,5,6,7)= m1+m4+m5+ m6+m7

       Complement is F’(A,B,C,D)= (0,2,3) = m0+m2+m3

       Complement of F’ is F that is different

F = (m0+m2+m3)’ = = m’0. m’2 . m’3 = = M0.M2.M3= П(0,2,3)









8


Standard Form to represent Boolean Function





        Sum of Minterms and Product of Maxterm may not be most efficient way to draw a circuit as all variables must be used.

        Standard Functions have one two or three terms and Two Levels. (AIM: Minimum Gates)

        SUM OF PRODUCT

F= y’ + xy+ x’yz’

Sum denotes OR of these terms
Two Levels

        PRODUCT OF SUM

F= x(y’+z)(x+’y+z’)

Product denotes AND of these terms
Two Levels




9


SUM OF PRODUCT




SUM OF PRODUCT F= y’ + xy+ x’yz’

Sum denotes OR of these terms Draw the circuit (2 Level)




x’ y z’

y’

x y






 F















10


PRODUCT of SUM


PRODUCT OF SUM F= x(y’+z)(x’y+z’)

Product denotes AND of these terms Draw the circuit (2 Level)









x’ y z’

x

y’

z











 F















11


Non Standard Boolean Function



        Boolean Expression in non standard form F=AB+C(D+E)
.

Neither SOP or POS

Implemented in 3 levels



A

B
F
C

D

E

Convert to Standard Form by distributive law

F=AB+C(D+E) = AB+CD+CE
Draw 2 Level Standard Sum of Product Circuit


12


Truth Table and Boolean Expression for 16 functions of two variables

         F0=0 Constant 0 or Null
          F1= x.yè AND (x and y)

          F2 = xy’è x but not y
         F3 = x

          F4 = x’yè y but not x

         F5 = y

          F6 = xy’ + x’y èExclusive OR ( x or y but not both

          F7= x+y èOR (x or y)
          F8 = (x+y)’ è NOR (Not OR)
          F9 = xy + x’y’è Equivalence (x equals y)
          F10 = y’ èNot y
          F11 = x+y’è If y then x
         F12 = x’ (Not x)

         F13 = x’ + y If x then y
          F14 = (xy)’ è NAND

         F15 = 1 Binary constant 1



13


NOR Logic gate




2-input NOR logic gate:

F = ( X + Y )'



x
F
y













X
Y
F



0
0
1



0
1
0



1
0
0



1
1
0
























14


NAND Logic gate




2-input NAND logic gate:

F = ( X .Y )'



x
F
y













X
Y
F



0
0
1



0
1
1



1
0
1



1
1
0
























15


Exclusive OR Logic gate




2-input exclusive-OR (XOR) logic gate:

F = X Ã…Y



x
F
y













X
Y
F



0
0
0



0
1
1



1
0
1



1
1
0
























16


Exclusive NOR Logic gate




2-input exclusive-NOR logic gate:

F = ( X Ã…Y )'



x
F
y













X
Y
F



0
0
1



0
1
0



1
0
0



1
1
1
























17


More Digital Logic Gates

AND                        F=xy
OR                                  F=x+y

Inverter F=x’
Buffer                        F=x
NAND F=(xy)’
NOR                                   F=(x+y)’

Exclusive OR- XOR

Exclusive NOR



18


Multiple Input GATES




3-input exclusive-OR (XOR) logic gate:

F = X Ã…Y Ã… Z


x
F
y
z

Implemented by 3 Input Gates









x
y  F
z

Implemented by 2 Input Gates













X
Y
Z
F




0
0
0
0




0
0
1
1




0
1
0
1




0
1
1
0




1
0
0
1




1
0
1
0




1
1
0
0




1
1
1
1







19


Implementation of Boolean Functions

§ Using only OR and NOT gates, draw a schematic for the
following function: F = xy + x' y'+ y' z

(F ' )'= ((xy + x' y'+ y' z)')'

= [( xy)'.(x' y' )'.(y' z)']'

= [( x'+ y' ).(x + y).( y + z' )]'

= (x'+ y' )'+(x + y)'+( y + z' )'
x

y


F




z                                     20


Implementation of Boolean Functions




§ Using ONLY NAND gates, draw a schematic for the following function: F = (a.b)+(b.c)












a
b
F


c









0 comments:

Post a Comment